Leung (2020) Treatment and spillover effects under network interference, REStat.

Model
  • Undirected adjacency matrix:  A, binary treatment:  D_i, unobserved heterogeneity:  \epsilon_i, and treatment response  Y_i.
  • 仮定: \{D_i\}_{i=1}^N は i.i.d., \{\epsilon_i, \epsilon_j, A_{ij}\}_{i \neq j} は identically distributed.
  • Nonparametric model:

 Y_i = r(D_i, T_i, \gamma_i, \epsilon_i), where  T_i = \sum_{i = 1}^N A_{ij} D_j, and  \gamma_i = \sum_{j = 1}^N A_{ij}*1.

 

Sampling Frame

  •  i について  W_i = (Y_i, D_i, T_i, \gamma_i) が観測される.データは  \{W_i\}_{i = 1}^nの triangular array, where  n \le N is the number of "focal units".

 \ldots the researcher first draws a random sample of  n \le N focal units and collects their treatment responses, treatment assignments, and identities of network neighbors. Then the researcher collects the treatment assignments of each neighbor.

  • ネットワーク  A 全体が観測できるわけではない.観測できる sub-network を  \tilde A と書く.
  • 以下を定義する:

 \mu_h(d, t, \gamma) = \mathbb{E}\Bigl[ h(\underbrace{r(d, t, \gamma, \epsilon_1)}_{= \: \text{potential outcome}})\Bigr]

  •  h(\cdot) が恒等関数の場合は  \mu(d,t,\gamma) と書く=average structural function (ASF).
  • 他の  h(\cdot) の例としては  h(x) = \mathbf{1}\{x \le q\}=quantile structural function (QSF).
Identification

Assumption (Exogeneity)

(a)  (D_1, \ldots, D_n) \perp (\tilde A, \epsilon_1, \ldots, \epsilon_n)

(b) For all  i,  \epsilon_i \perp \tilde A \mid \gamma_i

Proposition 1: Exogeneity assumption + regularity conditions

 \Longrightarrow  \mu_h(d, t, \gamma) = \mathbb{E}\left[ h(Y_1) \mid D_1 = d, T_1= t, \gamma_1 = \gamma \right]

  • 右辺は観測データのみで構成される=identifiable
Estimation and Inference
  •  \mu_h(d, t, \gamma) の推定量として以下を考える:

 \displaystyle \hat \mu_h(d,t,\gamma) = \frac{\sum_{i=1}^n h(Y_i) \mathbf{1}\{D_i = d, T_i = t, \gamma_i = \gamma\}}{\sum_{i=1}^n \mathbf{1}\{D_i = d, T_i = t, \gamma_i = \gamma\}}

Assumption (Correlated Effects)

(a)  A_{ij} = 0 かつ  \max_k A_{ik}A_{jk} = 0 ならば  \epsilon_i \perp \epsilon_j

(b)  (\epsilon_i, \epsilon_j) \perp \tilde A \mid A_{ij}, \gamma_i, \gamma_j, \sum_k A_{ik}A_{jk}

  • 以下を定義する:

 G_{ij} = \mathbf{1}\{(A_{ij} =1) \lor (\max_k A_{ik}A_{jk} \ge 1) \lor (i = j) \}

  • 上の仮定と合わせて, G = (G_{ij}) が適切な dependency graph になっていることが分かる.
  • あとはChin (2019) 同様,Ross (2011) に基づいて Stein’s method を適用するための条件を整える↓

Assumption (Degree Distribution)

 n^{-1}\sum_{i=1}^n|\mathbf{N}_i|^3 = O_P(1) &  n^{-1}\sum_{i=1}^n\sum_{j \neq i}(G^3)_{ij} = O_P(1), where  \mathbf{N}_i = \{j \mid G_{ij}=1\} .

Main Results

Assumpions (Exogeneity) + (Correlated Effects) + (Degree Distribution) + regularity conditions

 \Longrightarrow

Theorem 1:  \hat \mu_h(d,t,\gamma) \overset{p}{\to} \lim_{N \to \infty} \mu_h(d,t,\gamma)

Theorem 2:  \sqrt{n}\left( \hat \tau(d,t,d',t',\gamma) - \tau(d,t,d',t',\gamma) \right) \overset{d}{\to} N(0, \sigma^2), where  \hat \tau(d,t,d',t',\gamma) = \hat \mu(d,t,\gamma) - \hat \mu(d',t',\gamma) \tau(d,t,d',t',\gamma) = \mu(d,t,\gamma) - \mu(d',t',\gamma).

*1:Exposure mapping を  e_i = e(T_i, \gamma_i) と特定化するのと同じ.最近の流れからするとやや制約的か.